人生苦短

记录大学,记录生活,天道殷勤,请多关注!

人生苦短,我用Python!
大数据、机器学习、深度学习
  menu

pandas序列(Series)

Series可以理解为数据集中的一个字段,用于存储一行或者一列的数据,以及与之相关的索引集合(类似于列表,但是有索引)
Series的创建:

gdp1 = pd.Series([2,5,6,3,8])   #未指定行名称(索引),系统将会自动补上arange(0,n)的行索引
gdp2 = pd.Series({'北京':5.3,'钦州':3.6,'南宁':0.2,'柳州':6.5,'深圳':69,'广州':5.0}) 
#字典中的键对应Series中具体的行名称(也就是索引)
#print(gdp1)
#print(gdp2)
#print(pd.Series(np.array((5,6,8,9,5,2,4,5))))

Series的常用操作:
1.对于行号当作索引值的Series,下标索引从0开始;返回元素值与对应的索引:

print('从行号风格的gdp1里面取下标索引是1,4,2的三个元素:\n',gdp1[[1,4,2]])

2.对于字典形式构建的Series,除了可以使用索引序号(键值对在字典之中的索引)来访问获取元素值:

#还可以使用键来访问值、相当于字典操作
print('根据字典中的一对键值对构成一个索引号来进行取元素操作\n',gdp2[[0,2,4]])
print('\n根据字典中的键名来进行取对应的值,操作:\n',gdp2[['南宁','柳州']])

科普:
数学函数运算

print('通过numpy进行取对数运算:\n',np.log(gdp1))

#求平均gdp
print('通过pandas序列的自带方法求解平均gdp:\n',gdp1.mean())

标题:pandas序列(Series)
作者:chenruhai
地址:http://www.love520.ltd/articles/2019/08/03/1564796047925.html
CSDN博客地址:https://blog.csdn.net/qq_42658739
GitHub地址:https://github.com/chenruhai

评论